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Abstract —Various microstrip components, including mixers, IMPA’lT

oscillators, Gunn oscillators, doublers, circulators, and IMPAT’T ampli-

fiers, have been developed at W-band with state-of-the-art performance.

The use of microstip drastically reduces fabrication costs due to the less

stringent machining tolerance. The design and performance of these com-

ponents will be reported.

I. INTRODUCTION

M ILLIMETER-WAVE components have been re-

ported and used in many system applications. Most

approaches use waveguide, suspended stripline, and finline.

Fabricating these components at W-band generally re-

quires stringent tolerance and is expensive; microstrip can

alleviate this problem because no critical machining is

needed in its fabrication. The cost saving in large quantity

production can be 5 to 10 times comparedwith waveguide.

This paper reports many active and passive components

fabricated in microstrip medium on Duroid substrate.

II. RAT-RACE BALANCED MIXERS

Microstrip rat-race mixers have been reported at W-band

for very narrow-band operation [1]–[3]. The rat-race mixer

(Fig. 1) consists of a ring-type power splitter, two mixer

diodes, two RF chokes, and a low-pass filter. The LO input

is split equally into two mixer diodes. The RF input is also

split equally, but 180° out of phase at the mixer diodes.

The LO and RF are mixed in these diodes which generate

signals that are taken out through a low-pass filter. The RF

choke provides the tuning mechanism and prevents the RF

signal feeding into ground.

The dimensions of the ring are critical. It is 1.5 wave-

length in circumference with four arms separated by 60° of

angular rotation. Two input and output arms are spaced

from one another. At the center frequency, the input power

from arm A will split equally into arms B and D. Because

of the length of the electric path, the phase relationship

between arms B and D will be 180° out of phase. For the
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Fig. 1. Rat-race mixer and ring.
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Fig. 2. Performance of W-band rat-race microstrip mixer.

power input from arm C, the output will split equally in

phase to arms B and D. The design of the ring requires that

its impedance be equal to m times the characteristic

impedance of each arm. For a 50-L! system, this main ring

impedance is equal to 70.7 Q.

A five-stage low-pass Chebyshev filter with O.1-dB

passband ripple is used in the mixer. The high-impedance

line in the filter is 100 fl and the low-impedance line is 20

Q. The length of each section was optimized by the com-

puter.

By carefully designing the ring size and the RF and IF

matching, the bandwidth was improved considerably. A

conversion loss of less than 7 dB was achieved for an

instantaneous RF bandwidth of 9 GHz, as shown in Fig. 2.

The circuit was built on 5-roil Duroid substrate. Broad-band

finline-to-microstrip transitions were connected to the mixer

for RF and LO power coupling during mixer testing. The

transition has an insertion loss of less than 0.5 dB over a

35-GHz bandwidth. The mixer without the transitions is

shown in Fig. 3.

Optimization was also carried out to lower the LO pump

because a higher power LO drive is difficult to obtain at

W-band; thus, it is always desirable to lower the LO drive

to the mixer. With the external bias, the LO drive can be

substantially lower while maintaining a reasonable conver-

sion loss.
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Fig. 3. W-band microstnp rat-race mixer.
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Fig. 4. Mixer performance without external bias.
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Fig. 5. fixer performance with external bias

A bias scheme has been devised to bias the mixer diodes.

Fig. 4 shows the performance of the mixer without the

external bias. The conversion loss increases very rapidly

when the LO drive is below + 8 dBm, which is out of scale

and not shown in the figure. With the external bias, the LO

drive can be as low as +5 dBm while still maintaining the

conversion loss below 10 dB. The results are shown in

Fig. 5.

III. IMPATT AND GUNN OSCILLATORS

Little work was reported on active rnicrostrip compo-

nents operating at W-band [4]–[7], and the output power

was generally very low compared with their waveguide

counterpart. By further optimizing the circuit reported in

[4] and [7], better power outputs for IMPATT oscillators

were achieved.

As shown in Fig. 6, the CW IMPATT oscillator consists

of an IMPATT diode mounted on a 50-0 microstrip line,

coupled to a 50-fl half-wavelength resonator with a high-

impedance T-junction that transfers the RF power to a
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Fig. 6. Circuit schematic of IMPAT”T oscillator.
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Fig. 7. CW IMPATT oscillator performance.

microstrip-to-waveguide transition. The circuit was built

on Duroid substrate.

The IMPATT diode is mounted along the input 50-i2

line of three-quarter wavelengths at the desired frequency

from the output end. DC bias is provided from the other

end of the line. The connection from the bias side of the

50-SI line to the 3A/4 resonator is completed by soldering

a gold ribbon to each side of the circuit and the IMPATT

diode. To suppress subharmonic oscillations, a quarter-

wavelength stud at ~0/2 is placed in front of the IMPATT

diode. The first low-impedance section of the low-pass

filter in the dc bias line is located about a 3A/4 distance

away from the diode center which, consequently, presents

an open circuit to the diodes.

The gap between the 3A/4 and A/2 resonators and the

location of the T-junction determine the correct amount of

output toppling as shown in Fig. 6. The T-junction tap

point is most critical, as is also the impedance value. The

high-impedance line is then tapered back up to 50 !J over

at ‘least one wavelength. Fig. 7 shows the performance of

this W-band oscillator. Over 90 mW at 100 GHz has been

achieved, representing state-of-the-art performance using
microstrip oscillators. At 94 GHz, over 100-mW output

power was consistently achieved.

For pulsed operation, a peak output power of 5 W at

92.75 GHz was achieved with a 50-kHz pulse repetition

rate and 100-ns pulsewidth using double-drift IMPAIT

diodes with a” capacitance of 6 to 7 pF and a reverse

breakdown voltage of 14. Fig. 8 shows the bias

current/voltage and video output of the RF signal.

A sin@ar circtit was used for Gunn oscillators, Typical

power output’ is between + 8 and +11 dBm. With a

varactor incorporated, a tuning range of 800 MHz was

achieved with over + 8-dBm output power; the results are

shown in Fig. 9.
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Fig. 8. Performance of a W-band IMPATToscillator pulsed operation.

(a) Top trace for current and bottom trace for voltage. (b) RF output

signal.
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Fig. 9. Performanceof W-band microstrip Gunn VCO.
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Fig. 10. Block diagram ofmicrostrip multiplier.

IV. FREQUENCY DOUBLER

The frequency multiplier is a viable approach to achieve

low-noise, stable, high-frequency signals. All frequency

multipliers reported at this frequency range use waveguide

or suspended stripline [8]–[10]. A 46–92-GHz microstrip

doubler is presented here with efficiency comparable to the

suspended stripline multipliers.

Fig. 10 shows the block diagram of the doubler. It

consists of a dc block, an input matching and filtering

circuit, a varactor diode, and an output matching and

Fig. 11. Photograph of 46-92-GHz microstrip doubler.
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Fig. 12. Performance of 46-92-GHz microstrip doubler.
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Fig. 13. Circulator circuit configuration.

filtering circuit. Multiplication is accomplished with a GaAs

varactor diode, which has a cutoff frequency of about 500

GHz. The design began with the calculation of the diode

impedance at input and output frequencies. Matching net-

works were then designed to match these impedance levels.

Fig. 11 shows the actual hardware; performance is sum-

marized in Fig. 12. The conversion loss is about 8 to 9 dB

over a 500-MHz output bandwidth.

V. CIRCULATORS

Circulators are important components for constructing

oscillators and amplifiers using two terminal devices. At

W-band, the ferrite disk becomes too small to support the

lowest order mode; therefore, a relatively large ferrite

supporting higher order modes is preferred to ensure pro-

ducibility, repeatability of performance, and reasonable

mechanical tolerance. The penalty for operating at higher

order modes is the slightly higher insertion loss.

As a dielectric resonator, the junction ferrite supports

the propagation of a mode, controlled by the Xl ~ root of

the Bessel function J’(x), and the ferrite radius is de-
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Fig. 14. TRW W-band network analyzer schematic.

Fig. 15. Circulator impedance measurement.

termined from

R= [(2m,&,]’”

where A ~ is the free-space wavelength at the design

frequency and c, is the relative dielectric constant of the

ferrite.

The calculated diameters for different modes are

fundamental mode: ~,~ =1.8, 2R = 0.021 inx

first higher order mode: Xl, ~ = 3.05, 2R = 0.036 in

second higher order mode: Xl, ~ = 3.83, 2R = 0.044 in.

The ferrite disk operating at the first higher order mode

was selected with a diameter of 0.036 in. This large disk

size has the advantage of less stringent mechanical toler-

ances and can thus be produced at lower cost. Fig. 13

shows the circuit configuration.

Another important analysis was to determine the material

to be used for the ferrite disk. C-48 material was chosen

because of its demonstrated performance in waveguide;

Duroid 5880 substrate material was selected for its low loss

and handling ease.

The matching circuit design was based on impedance

measurements using the network analyzer (Fig. 14). The

+

LC 70

Fig. 16. Equivalent circuit of microstrip ferrite circulator.

Fig. 17. Microstrip circulator with impedamce quarter-wavelength trans -
former.

results of this impedance measurement for several frequen-

cies are plotted on a Smith chart as shown in Fig. 15. It can

be seen that the circuit resonance occurs at 96.5 GHz,

which is slightly higher than the designed operating
frequency of 94 GHz. The center frequency can be easily

adjusted by using a puck with a 2-percent larger diameter.

At the resonance, the ferrite puck becomes a pure resis-

tance of 70 !il. The equivalent circuit of the ferrite circula-

tor can be as shown in Fig. 16 with a LC resonant circuit

in parallel with a resistance. The circulator provides the

highest isolation and lowest insertion loss at the resonance.

Based on this measurement, a matching circuit was

designed to match the 50-f2 line impedance to the ferrite

impedance. The circuit is shown in Fig. 17. The circulator

has an insertion loss of less than 1.5 dB and an isolation

more than 20 dB over a 2-GHz bandwidth (Fig. 18). No
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external tuning stubs were required in the present circuit to

improve the matching.

The center, frequency of the circulator can be adjusted by

using slightly different sizes of ferrite disks. For example,

an operating frequency of 94 GHz was achieved using a

ferrite disk with a diameter of 0.0375 in. Fig. 19 shows the

performance of this circulator.

VI. IMPATT AMPLIFIER

The IMPATT oscillator can be connected to a microstrip

circulator forming an injection-locked amplifier (Fig. 20).

Since the source is to be injection-locked, the coupled-line

microstrip circuit must be designed to allow for the effects

of injection-locking on the real input impedance seen by

the IMPATT diode. This means that the output coupling

coefficient must be increased according to the following

Fig. 21. W-band all-microstrip IMPA~ amplifier.
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Fig. 22. Injection-locking measurement system.

equation:

,

where

B

Z.
ZH
Q(I
e

ZO 2Q0

()
B=~ — cos26’

HT

,.

output coupling coefficient,

line impedance,

tap point impedance,

unloaded quality factor,

distance to tap point.
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The equation indicates that the location of the tap point

must be moved toward the input end of the half-wave

resonator. This circuit modification allows the frequency to

swing through a wide range and achieve wide locking

bandwidth.

The oscillator was integrated with the microstrip circula-

tor to form’ an amplifier. Fig. 21 shows the microstrip

IMPATT amplifier. At the top is the microstrip circulator

with the input and output ports coupled to the transitions.

At the bottom is the microstrip IMPATT oscillator.
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+17 dBm. Fig. 24(a) shows the free-running spectrum of

the IMPATT amplifier. After the application of the locking

signal at an injection-locking gain of 20 dB, the spectrum

exhibits excellent low-noise characteristics, as shown in

Fig. 24(b).

VII. CONCLUSIONS

Various W-band microstrip components have been de-

veloped with state-of-the-art performance. These compo-

nents can be fabricated at very low cost and can be used as

building blocks for many systems.

Fig. 23. Injection-locking bandwidth (2A~) as a function of power gain
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Using the measurement setup shown in Fig. 22, some

preliminary injection locking data were obtained. The re-

sults are shown in Fig. 23. As the graph shows, a 500-MHz

locking bandwidth was achieved at 20-dB locking gain and

1900 MHz at 3-dB gain. With these data and the following

equation, the external Q of the circuit can be calculated

[11]:

(-)2Af 2 PO ‘1”2

fcl = Q,x, P~

where 2A f is the total locking bandwidth, and fO is the

free-running frequency. PO is the free-running power out-

put and P~ is the locking signal power. From Fig. 23, the

external Q of approximately 37 was calculated. The high

circuit Q is believed due to the built-in resonant stub.

The power variation was less than 2 dB for every value

of input power and the maximum output power was

-.
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