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Abstract — Various microstrip components, including mixers, IMPATT
oscillators, Gunn oscillators, doublers, circulators, and IMPATT ampli-
fiers, have been developed at W-band with state-of-the-art performance.
The use of microstrip drastically reduces fabrication costs due to the less
stringent machining tolerance. The design and performance of these com-
ponents will be reported.

I. INTRODUCTION

ILLIMETER-WAVE components have been re-

ported and used in many system applications. Most
approaches use waveguide, suspended stripline, and finline.
Fabricating these components at W-band generally re-
quires stringent tolerance and is expensive; microstrip can
alleviate this problem because no critical machining is
needed in its fabrication. The cost saving in large quantity
production can be 5 to 10 times compared with waveguide.
This paper reports many active and passive components
fabricated in microstrip medium on Duroid substrate.

II. RAT-RACE BALANCED MIXERS

Microstrip rat-race mixers have been reported at W-band
for very narrow-band operation [1]-[3]. The rat-race mixer
(Fig. 1) consists of a ring-type power splitter, two mixer
diodes, two RF chokes, and a low-pass filter. The LO input
is split equally into two mixer diodes. The RF input is also
split equally, but 180° out of phase at the mixer diodes.
The LO and RF are mixed in these diodes which generate
signals that are taken out through a low-pass filter. The RF
choke provides the tuning mechanism and prevents the RF
signal feeding into ground.

The dimensions of the ring are critical. It is 1.5 wave-
length in circumference with four arms separated by 60° of
angular rotation. Two input and output arms are spaced
from one another. At the center frequency, the input power
from arm A will split equally into arms B and D. Because
of the length of the electric path, the phase relationship
between arms B and D will be 180° out of phase. For the
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Fig. 1. Rat-race mixer and ring.
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Fig. 2. Performance of W-band rat-race microstrip mixer.

power input from arm C, the output will split equally in
phase to arms B and D. The design of the ring requires that
its impedance be equal to y2 times the characteristic
impedance of each arm. For a 50-Q system, this main ring
impedance is equal to 70.7 .

A five-stage low-pass Chebyshev filter with 0.1-dB
passband ripple is used in the mixer. The high-impedance
line in the filter is 100 © and the low-impedance line is 20
Q. The length of each section was optimized by the com-
puter.

By carefully designing the ring size and the RF and IF
matching, the bandwidth was improved considerably. A
conversion loss of less than 7 dB was achieved for an
instantaneous RF bandwidth of 9 GHz, as shown in Fig. 2.
The circuit was built on 5-mil Duroid substrate. Broad-band
finline-to-microstrip transitions were connected to the mixer
for RF and LO power coupling during mixer testing. The
transition has an insertion loss of less than 0.5 dB over a
35-GHz bandwidth. The mixer without the transitions is
shown in Fig. 3. '

Optimization was also carried out to lower the LO pump
because a higher power LO drive is difficult to obtain at
W-band; thus, it is always desirable to lower the LO drive
to the mixer. With the external bias, the LO drive can be
substantially lower while maintaining a reasonable conver-
sion loss.
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Fig. 3. W-band microstrip rat-race mixer.
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Fig. 5. Mixer performance with external bias.

A bias scheme has been devised to bias the mixer diodes.
Fig. 4 shows the performance of the mixer without the
external bias. The conversion loss increases very rapidly
when the LO drive is below +8 dBm, which is out of scale
and not shown in the figure. With the external bias, the LO
drive can be as low as +5 dBm while still maintaining the
convers1on loss below 10 dB. The results are shown in
Fig. §.

III.  IMPATT AND GUNN OSCILLATORS

Little work was reported on active microstrip compo-
nents operating at W-band [4]-[7], and the output power
was generally very low compared with their waveguide
counterpart. By further optimizing the circuit reported in
[4] -and [7], better power outputs for IMPATT oscillators
were achieved.

As shown in Fig. 6, the CW IMPATT oscillator consists:

of an IMPATT diode mounted on a 50-Q microstrip line,
coupled to a 50-Q half-wavelength resonator with a high-
impedance T-junction that transfers the RF power to a
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Fig. 7. CW IMPATT oscillator performance.

microstrip-to-waveguide transition. The circuit was built
on Duroid substrate.

The IMPATT diode is mounted along the input 50-2
line of three-quarter wavelengths at the desired frequency
from the output end. DC bias is provided from the other
end of the line. The connection from the bias side of the
50-2 line to the 3A /4 resonator is completed by soldering
a gold ribbon to each side of the circuit and the IMPATT
diode. To suppress subharmonic oscillations, a quarter-
wavelength stud at f /2 is placed in front of the IMPATT
diode. The first low-impedance section of the ‘low-pass
filter in the dc bias line is located about a 3A /4 distance
away from the diode center which, consequently, presents
an open circuit to the diodes. ’

The gap between the 3\ /4 and A /2 resonators and the
location of the T-junction determine the correct amount of
output coupling as shown in Fig. 6. The T-junction tap
point is most critical, as is also the impedance value. The
high-impedance line is then tapered back up to 50 @ over
at least one wavelength. Fig. 7 shows the performance of
this W-band oscillator. Over 90 mW at 100 GHz has been
achieved, representing state-of-the-art performance using
microstrip oscillators. At 94 GHz, over 100-mW output
power-was consistently achieved. '

‘For pulsed operation, a peak output power of 5 W at
92.75 GHz was achieved with a 50-kHz pulse repetition
rate and 100-ns pulsewidth using double-drift IMPATT
diodes with a capacitance of 6 to 7 pF and a reverse
breakdown voltage of 14. Fig. 8 shows the bias
current /voltage and video output of the RF signal.

A similar circuit was used for Gunn oscillators. Typical
power output is between +8 and +11 dBm. With a
varactor incorporated, a tuning range of 800 MHz was
achieved with over +8-dBm output power; the results are
shown in Fig. 9.



CHANG et al.: W-BAND MICROSTRIP COMPONENTS )

®

Fig. 8. Performance of a W-band IMPATT oscillator pulsed operation.
(a) Top trace for current and bottom trace for voltage. (b) RF output
signal.
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Fig. 9. Performénce of W-band microstrip Gunn VCO.
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Fig. 10. Block diagram of microstrip multiplier.

V. FREQUENCY DoOUBLER

The frequency multlpher is a viable approach to achieve
low-noise, stable, high-frequency signals. All frequency
multipliers reported at this frequency range use waveguide
or suspended stripline [8]-[10]. A 46—92-GHz microstrip
doubler is presented here with efficiency comparable to the
suspended stripline multipliers.

Fig. 10 shows the block diagram of the doubler. It
consists of a dc block, an input matching and filtering
circuit, a varactor diode, and an output matching and
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Fig. 11.

Photograph of 46—-92-GHz microstrip doubler.
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Fig. 12. Performance of 46-92-GHz microstrip doubler.
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Fig. 13. Circulator circuit configuration.

filtering circuit. Multiplication is accomplished with a GaAs

varactor diode, which has a cutoff frequency of about 500
GHz. The design began with the calculation of the diode
impedance at input and output frequencies. Matching net-
works were then designed to match these impedance levels.

Fig. 11 shows the actual hardware; performance is sum-
marized in Fig. 12. The conversion loss is about 8 to.9 dB
over a 500-MHz output bandwidth.

V. CIRCULATORS

Circulators are important components for constructihg
oscillators and amplifiers using two terminal devices. At
W-band, the ferrite disk becomes too small to support the

lowest order mode; therefore, a relatively large ferrite

supporting higher order modes is preferred to ensure pro-

- ducibility, repeatability of performance, and reasonable

mechanical tolerance. The penalty for operating at higher
order modes is the slightly higher insertion loss.

As a dielectric resonator, the junction ferrite supports
the propagation of a mode, controlled by the X; ,, root of
the Bessel function J'(x), and the ferrite radius is de-
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Fig. 15. Circulator impedance measurement.

termined from
X 1,m

R= 12
[(2W/}\0)2€r] /

where A, is the free-space wavelength at the design
frequency and e, is the relative dielectric constant of the
ferrite.

The calculated diameters for different modes are -
X, ,,=18, 2R=0.021 in
X, ,,=3.05, 2R=0.036 in
X;,,=3.83, 2R=0.044in.

fundamental mode:
first higher order mode:
second higher order mode:

The ferrite disk operating at the first higher order mode
was selected with a diameter of 0.036 in. This large disk
size has the advantage of less stringent mechanical toler-
ances and can thus be produced at lower cost. Fig. 13
shows the circuit configuration.

Another important analysis was to determine the material
to be used for the ferrite disk. C-48 material was chosen
because of its demonstrated performance in waveguide;
Duroid 5880 substrate material was selected for its low loss
and handling ease.

The matching circuit design was based on impedance
measurements using the network analyzer (Fig. 14). The

Fig. 16. Equivalent circuit of microstrip ferrite circulator.

Fig. 17. Microstrip circulator with impedance quarter-wavelength trans -

former.

results of this impedance measurement for several frequen-
cies are plotted on a Smith chart as shown in Fig. 15. It can
be seen that the circuit resonance occurs at 96.5 GHz,
which is slightly higher than the designed operating
frequency of 94 GHz. The center frequency can be easily
adjusted by using a puck with a 2-percent larger diameter.
At the resonance, the ferrite puck becomes a pure resis-
tance of 70 . The equivalent circuit of the ferrite circula-
tor can be as shown in Fig. 16 with a LC resonant circuit
in parallel with a resistance. The circulator provides the
highest isolation and lowest insertion loss at the resonance.

Based on this measurement, a matching circuit was
designed to match the 50-Q line impedance to the ferrite
impedance. The circuit is shown in Fig. 17. The circulator
has an insertion loss of less than 1.5 dB and an isolation
more than 20 dB over a 2-GHz bandwidth (Fig. 18). No
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Fig. 19. Performance optimized at 94 GHz.
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Fig. 20. Block diagram of injection-locked amplifier.

external tuning stubs were required in the present circuit to
improve the matching.

The center frequency of the circulator can be adjusted by
using shghtly different sizes of ferrite disks. For example,
an operating frequency of 94 GHz was achieved using a

ferrite disk with a diameter of 0.0375 in. Fig. 19 shows the -

performance of this circulator.

VI. IMPATT AMPLIFIER

The IMPATT oscillator can be connected to a microstrip
circulator forming an injection-locked amplifier (Fig. 20).

Since the source is to be injection-locked, the coupled-line

microstrip circuit must be designed to allow for the effects
of injection-locking on the real input impedance seen by
the IMPATT diode. This means that the output coupling
coefficient must be increased according to the following
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W-band all-microstrip IMPATT amplifier.

Fig. 21.
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Fig. 22. . Injection-locking measurement system.

equation:
20,

)cos 0
w

Zle

where .

output coupling coefficient,
line impedance,

tap point impedance,
unloaded quality factor,
distance to tap point.

The equation indicates that the location of the tap point
must be moved toward the input end of the half-wave
resonator. This circuit modification allows the frequency to
swing through a wide range and achieve wide locking
bandwidth.

The oscillator was integrated with the microstrip circula-
tor to form an amplifier. Fig. 21 shows the microstrip
IMPATT amplifier. At the top is the microstrip circulator
with the input and output ports coupled to the transitions.
At the bottom is the microstrip IMPATT oscillator.
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Fig. 24. Spectrums of locked and unlocked IMPATT amplifier. (a)
Free-running spectrum. (b) Injection-locked spectrum.

Using the measurement setup shown in Fig. 22, some
preliminary injection locking data were obtained. The re-
sults are shown in Fig. 23. As the graph shows, a 500-MHz
locking bandwidth was achieved at 20-dB locking gain and
1900 MHz at 3-dB gain. With these data and the following
equation, the external Q of the circuit can be calculated

[11}:
20f 2 (Po)‘l/2
fO —_Qext PL

where 2Af is the total locking bandwidth, and f, is the
free-running frequency. P, is the free-running power out-
put and P; is the locking signal power. From Fig, 23, the
external Q of approximately 37 was. calculated. The high
circuit Q is believed due to the built-in resonant stub.
The power variation was less than 2 dB for every value
of input power and the maximum output power was
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+17 dBm. Fig. 24(a) shows the free-running spectrum of
the IMPATT amplifier. After the application of the locking
signal at an injection-locking gain of 20 dB, the spectrum
exhibits excellent low-noise characteristics, as shown in
Fig. 24(b).

VIL

Various W-band microstrip components have been de-
veloped with state-of-the-art performance. These compo-
nents can be fabricated at very low cost and can be used as
building blocks for many systems.

CONCLUSIONS
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